M 173.* Calculated $C_{10}H_7NS$: N 8.08%; M 173. UV spectrum (EtOH), λ_{max} m μ (lg ϵ): 250 (4.28), 262 (4.33), 286 (4.13). IR spectrum (KBr), ν cm⁻¹: 3410 (indole N-H). The properties of this heterocyclic system closely resemble

$$\begin{array}{c} \text{NO}_2 \\ \text{CHO} \\ \text{S} \\ \text{CHO} \\ \text{CH} \\ \text{CH$$

those of thieno [3,2-b] pyrrole [3]. III gives a dark blue color with Erlich's reagent. It decomposes rapidly when stored in the light. It readily sublimes in a vacuum. The structure of III is checked by reductive desulfurization with Raney Ni to 2-phenylpyrrole, identified by mp, IR spectrum, and behavior on chromatographing with an authentic specimen [4].

REFERENCES

- 1. O. P. Shkuro and V. P. Mamaev, Izv. SO AN SSR, ser. khim., 2, 81, 1965.
- 2. N. N. Suvorov, M. V. Fedotova, O. B. Ogareva, and E. G. Balasheva, ZhOKh, 30, 3118, 1960.
- 3. D. Matteson and H. Snyder, J. Org. Chem., 22, 1500, 1957.
- 4. H. Adkins and H. Coonradt, J. Am. Chem. Soc., 63, 1563, 1941.

9 November 1965

Novosibirsk Institute of Organic Chemistry, Siberian Division AS USSR

UDC 547.722

REACTION OF FURAN AMINES WITH ACROLEIN

V. G. Glukhovtsev, S. V. Zakharova, and Z. K. Vol'nova

Khimiya Geterotsiklicheskikh Soedinenii, Vol. 2, No. 4, pp. 635-636, 1966

The present work represents a first synthesis of furan derivatives with carbonyl and amino groups at positions 2 and 5. To achieve the goal, a study was made of the reaction of various N-substituted furan amines with acrolein in the presence of AcOH. It was shown that furan amines with a tertiary amino group at position 3 in the side chain react with acrolein to give the corresponding furan 2, 5-substituted aldehydoamines. For example, 24 g (0.4 mole) AcOH was added to a mixture of 25 g (0.121 mole) 2- [3'-(methyl- β -cyanoethylamino) butyl] furan [bp 121° C (3 mm); n_D^{20} 1.4815; d_A^{20} 1.0040. Found: C 69.48, 69.48; H 8.65, 8.49%. Calculated for $C_{12}H_{18}N_2O$: C 69.86; H 8.79%], 16 g (0.286 mole) acrolein, and 0.2 g hydroquinone. After stirring for 2 hr, the products were diluted with water, neutralized with NaHCO3, and extracted with ether. After distilling off the ether, there was obtained 8 g (26%) 2-(3'-oxopropyl)-5-[3'-methyl- β -cyanoethylamino) butyl] furan, bp 124°C(3.5 mm); n_D^{20} 1.4850; d_A^{20} 1.0193. Found: C 68.72, 68.80; H 8.42, 8.51%. Calculated for $C_{15}H_{22}N_2O_2$: C 68.66; H 8.45%.

It was shown that under these conditions, N-substituted furan amines, with the amino group next to the furan ring, does not react with acrolein. For example, N-methyl (β -cyanoethyl) furfurylamine [bp 101° (3 mm); n_D^{20} 1.4825; d_A^{20} 1.0335. Found: C 65.40, 65.20; H 7.56, 7.35%. Calculated for $C_9H_{12}N_2O$: C 65.82; H 7.36.] is unchanged on treatment with acrolein.

There is complete polymerization of furan amines with a hydrogen atom at the nitrogen atom, e.g., 2-[3'-

^{*}Molecular weight found mass-spectrometrically.

(β -cyanoethylamino) butyl] furan [bp 112° (2 mm); $n_{\rm D}^{20}$ 1.4840; d_4^{20} 1.0150. Found: C 68.46, 68.34; H 8.36, 8.22%. Calculated for $C_{11}H_{16}N_2O$: C 68.71; H 8.39%.], when they are treated with acrolein under the conditions described.

16 October 1965

Zelinskii Institute of Organic Chemistry, AS USSR, Moscow